Differential activation of mitogenic signaling pathways in aortic smooth muscle cells deficient in superoxide dismutase isoforms.
نویسندگان
چکیده
OBJECTIVE Reactive oxygen species (ROS) integrate cellular signaling pathways involved in aortic smooth muscle cell (SMC) proliferation and migration associated with atherosclerosis. However, the effect of subcellular localization of ROS on SMC mitogenic signaling is not yet fully understood. METHODS AND RESULTS We used superoxide dismutase (SOD)-deficient mouse aortic SMCs to address the role of subcellular ROS localization on SMC phenotype and mitogenic signaling. Compared with wild-type, a 54% decrease in total SOD activity (almost equal to 50% decrease in SOD1 protein levels) and a 42% reduction in SOD2 activity (approximately equal to 50% decrease in SOD2 protein levels) were observed in SOD1+/- and SOD2+/- SMCs, respectively. Consistent with this, basal and thrombin-induced superoxide levels increased in these SMCs. SOD1+/- and SOD2+/- SMCs exhibit increased basal proliferation and enhanced [3H]-thymidine and [3H]-leucine incorporation in basal and thrombin-stimulated conditions. Our results indicate preferential activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinases in SOD1+/- and janus kinase/signal transducer and activator of transcriptase (JAK/STAT) pathway in SOD2+/- SMCs. Pharmacological inhibitors of ERK1/2 p38 and JAK2 confirm the SOD genotype-dependent SMC proliferation. CONCLUSIONS Our results suggest that SOD1 and SOD2 regulate SMC quiescence by suppressing divergent mitogenic signaling pathways, and dysregulation of these enzymes under pathophysiological conditions may lead to SMC hyperplasia and hypertrophy.
منابع مشابه
Atherosclerosis is attenuated by limiting superoxide generation in both macrophages and vessel wall cells.
OBJECTIVE We previously showed that NAD(P)H oxidase deficiency significantly reduces atherosclerosis in apoE(-/-) mice. The present study was designed to determine the relative contribution of monocyte/macrophage versus vascular wall cell NAD(P)H oxidase to atherogenesis in this model. METHODS AND RESULTS Cell-specific NAD(P)H oxidase inhibition was achieved via allogenic, sex-mismatched bone...
متن کاملNative LDL induces proliferation of human vascular smooth muscle cells via redox-mediated activation of ERK 1/2 mitogen-activated protein kinases.
This study investigated mechanisms underlying native low-density lipoprotein (LDL)-stimulated proliferation of human vascular smooth muscle cells (VSMC). Experiments were performed to determine whether native LDL affects reactive oxygen species (ROS) formation and activity of extracellular signal-regulated kinase 1/2 (ERK1/2), and whether redox-sensitive pathways contribute to LDL-induced cell ...
متن کاملTanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling
Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell mi...
متن کاملStress and Atherogenesis: Smooth Muscle Cell Mitogenic Activity and other Biochemical Changes Associated with Sera of \"Stressed\" Subjects
The proliferation of smooth muscle cells in the arterial wall (VSMC) is considered to play a key role in the development of atherosclerosis. To investigate the possible contribution of "stress" (experimentally-induced) to this process, blood from healthy volunteers, ages 21 to 65, screened to exclude major risk factors for coronary heart disease, was assayed for mitogenic activity after the sub...
متن کاملAnalysis of Extracellular Superoxide Dismutase and Akt in Ascending Aortic Aneurysm With Tricuspid or Bicuspid Aortic Valve
Ascending aortic aneurysm (AsAA) is a consequence of medial degeneration (MD), deriving from apoptotic loss of smooth muscle cells (SMC) and fragmentation of elastin and collagen fibers. Alterations of extracellular matrix structure and protein composition, typical of medial degeneration, can modulate intracellular pathways. In this study we examined the relevance of superoxide dismutase (SOD3)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 25 5 شماره
صفحات -
تاریخ انتشار 2005